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A comparison is made between various solutions methods which have been used to find 
equilibrium configurations in atomic simulation studies. It is found that the conjugate gradient 
scheme is best although a small modification is necessary from the usual formation to produce 
good convergence. Low-lying metastable configurations are readily produced and it appears 
that none of the solution methods used can guarantee a true lowest energy state. Several 
numerical integrators, used in dynamic simulations and some of the static solution techniques, 
are also examined and the most appropriate to use in each situation is determined. 0 1985 

Academic Press, Inc. 

The study of materials and their associated defects at the atomic level by com- 
puter simulation is a relatively new field of materials research. Materials are studied 
at this level in order to better understand their macroscopic properties, such as 
mechanical strength, by observing their behaviour on the microscopic level. Since it 
is very difficult to examine real materials on this small scale, this work is most 
easily accomplished by studying model materials using computer simulation. 

In a typical atomic simulation problem, a small region of the material is 
modelled by a set of mass points, representing the atoms, connected by non-linear 
springs, representing the atomic bonds. The interatomic potentials to be used for 
these springs are determined from fundamental quantum mechanical considerations 
or, more commonly, by empirically fitting to known macroscopic properties. This 
model may represent a gas or liquid [ 11, a perfect crystal [a], or a crystal contain- 
ing a defect such as crack or dislocation [3]. The simulations may be divided into 
two types, static and dynamic. In a static simulation, only the equilibrium 
arrangement of atoms in the model is found. This permits the determination of the 
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energy and equilibrium structure of crystal defects [3]. In a dynamic analysis, t 
motion of the atoms with time is followed and it is the properties of this motion 
which are of interest. This may be to study the motion of crystal defects [4], 
nuclear radiation damage [S], or various thermodynamic and lattice dynamic 
properties [2]. The limiting factor in atomic simulations is computer cost. If com- 
puter cost could be reduced, it would be possible to solve larger, more complex 
models which would improve the accuracy of the results. 

Three solution methods are in general use for static solutions and they will be 
referred to here as simultaneous quenching, individual quenching, and the con- 
jugate gradient method. All start with the model near the final equilibrium position 
and continuously force it closer to equilibrium. The starting position may be set by 
using the linear elastic solution for the defect being analysed, for example. 
Simultaneous quenching [3] involves integrating the equations of motion of the 
model until the total kinetic energy of the system reaches a maximum. At this point, 
all velocities are set to zero and the procedure is then repeated. The action of 
setting the velocities to zero is known as quenching since, at the macroscopic level, 
this is equivalent to suddenly dropping the temperature to absolute zero. Each of 
these quenching operations removes some excess energy from the system and, thus, 
the system continually approaches equilibrium. Individual quenching [4] is similar 
to this except that each atom is individually quenched, or stopped, when its kinetic 
energy is a maximum. The conjugate gradient method [6] is an optimization 
technique which is used to lind equilibrium positions defined as potential energy 
minima. It involves a search through the multi-dimensional configuration space of 
the system along directions which are constrained to be orthogonal to all 
previously searched directions. This has been found to give considerably better per- 
formance than a simple steepest descent approach. Johnson [7] used a simp 
optimization routine for simple crystal defects but general experience wi 
optimization procedures [S] indicates that the conjugate gradient method should 
be better for complex problems, so Johnson’s method was not considered. 

This paper presents a systematic comparison of the three static solution techni- 
ques described above by examining the solution time required for various problems. 
Prior to this, a comparison is made of several integration schemes which may be 
used to solve the equations of motion of the model. This is necessary since both 
quenching procedures use these integrators and the maximum time step whir% may 
be used with them determines how well the quenching procedures will compare to 
the conjugate gradient scheme. Since this is the primary reason for this test: 
elaborations such as tunable integrators [9] or variable step sizes were not con- 
sidered. In spite of this, the results should be of interest for choosing an integration 
scheme for use in those dynamic problems in which it is desired to observe the 
model for a given real time, such as those involving studies of defect motion. In 
dynamic studies in which the evaluation of thermodynamic properties is the 
primary interest, this may not be the main consideration. Then a given number of 
integration steps may be desired and this study of the efficiency of integration 
schemes is of less significance. 
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INTEGRATION SCHEME TESTS 

The pertinent quantity to be used in comparing the relative merits of various 
integration schemes is the number of interatomic force evaluations per unit model 
time, since almost all the computer cost is involved in the calculation of these for- 
ces. The inverse of this quantity, h/n, where h is the length of the time step used in 
the integration procedure and n is the number of force evaluations per step, may be 
considered a figure of merit with computer cost inversely proportional to h/n. For 
dynamic problems the limiting factor is usually the accuracy of the integration 
procedure, which must be within the limits of accuracy desired for the simulation. 
When the integration scheme is used as part of a quenching operation for static 
solutions, accuracy is not important unless it is very poor since any errors in the 
model state introduced by the integration scheme will be eliminated, just as the 
initial error is eliminated as the model approaches equilibrium. The significance of 
the accuracy of the integration scheme may be assessed by comparing the error 
introduced into the system by the inaccuracy of the integration scheme with the 
rate of removal of this error by the quenching algorithms. These are both examined 
below. The former can be obtained from Fig. 3 and the latter from Figs. 4-7. The 
rate of decrease of error in the quenching algorithms is at least 20 times the possible 
rate of increase by any of the integration schemes tested, indicating that the 
accuracy of the integration scheme is not of great significance when it is used as 
part of a quenching algorithm. The limiting factor on h/n for static solutions is, 
then, the system stability limit regardless of accuracy. 

The relative merits of different integration schemes are problem dependent [lo] 
and very difficult to determine analytically. As a result, comparison must be made 
by numerical experiments and several tests of this type are available [ 10, 1 l] from 
which some general conclusions may be drawn. Most of these numerical tests 
involve only a few degrees of freedom. Beeman [12], however, has presented the 
results of test of a variety of predictor-corrector methods on a simulation of liquid 
argon involving several hundred degrees of freedom. The primary interest of the 
present paper is in the simulation of defects in solids such as iron. This differs from 
simulations of liquids or gases such as those considered in [12] by using 
interatomic potentials which are generally steeper at small separations and which 
have shorter cutoffs. Also, of course, the ratio of kinetic to potential energy in a 
solid differs considerably from that in the corresponding liquid. These differences 
will affect the stability limits of the numerical integration procedures, so it is useful 
to re-examine their behaviour for the case of the simulation of solids. We do so in 
this section. We also examine a slightly wider range of integration schemes than 
that studied by Beeman, although he provides more detail on predictor-corrector 
methods than we do. Several integration schemes have been used in the simulation 
of solids, by far the most common of which is a simple 2-step difference formula 
[S]. This will be compared to several others selected from the literature. All the 
integration schemes tested are summarized in the Appendix. 

To select methods which may be applicable, the characteristics of the model 
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being solved must be considered. Techniques useful for stiff differential equations 
need not be considered, since the time scale of interest is that of the smallest time 
constant. The equations are purely second order with no first order components, so 
only those methods developed particularly for this type of problem will be tested. 
Most previously published comparisons are for integrators of sets of first-order 
ferential equations only. The results are probably qualitatively applicable to similar 
second-order solvers, however, so these previously published comparisons will be 
used as a basis for initial selection of the methods to be considered here. 

As stated above, most simulations have used a simple 2-step difference scheme 
(see Appendix Eq. Al). Many other simple difference schemes are possible, all more 
elaborate than the a-step, and a 5-step one (Eq. AZ) was chosen as representive of 
this class [lo]. The other main classes are the Runge-Kutta and the predic- 
torcorrector methods. The general conclusions of Lapidus and Seinfeld [IO] for 
the Runge-Kutta methods are that, for the accuracy level needed here, which is 
relatively low compared to that needed for many other problems, the accuracy at a 
given value of h/n is nearly independent of the order of the integration scheme used. 
Similarly the stability limits expressed as h/n are also nearly independent of order. 
As a result only one Runge-Kutta method, of third order (Eq. A3), was selected for 
the test [ 13 J. Lapidus and Seinfeld also concluded that, of the predictor-corrector 
methods, the Adams methods are best in general. The Adams methods are charac- 
terized by the number of steps used, q, and the number of iterations of the co 
tor, s. A comparison of different Adams methods on several problems [ I1 ] led 
and Creemer to conclude that as q increased, the error and stability decreased for a 
given computer cost. This is consistent with the result of the tests by Beeman [12]. 
Thus it would be expected that a high q method would be better for accuracy in 
those dynamic problems in which accuracy requirements dominate, while a low 4 
would give greater stability for static problems. The effect of changes in s was less 
consistent in f 113, with s = 1 better for some problems and s = 2 better for others. 
A q = 4 (Eq. A5) and a q = 6 (Eq. A6) method were selected and both were trie 
with s = 1 and 2. The two s = 2 schemes were not found to be competitive in ei 
accuracy or stability when tested and so will not be considered further. 
Wordsieck [13, 141 modification of the Adams method was used since it permits 
simultaneous possession of the atom positions and their derivatives and, therefore, 
of the system potential and kinetic energies. Also changes in the step size are easier 
to implement than for the basic Adams method and this may be of use in some 
problems although it is not pursued here. Finally a hybrid scheme develope 
especially for high efficiency with second-order equations in problems o 
astronautics [ 153 was tested (Eqs. (A7) and (Ag)). This has characteristics of both 
Runge-Kutta and predictorcorrector methods, 

The tests were performed on the model crystal shown in Fig. 1 which represents 
two planes of atoms in bee a-Fe. The atomic motions are restrained to he in these 
planes SO the material may be considered to be in plane strain. The interato 
potential used is the Johnson-I potential [7], shown in Fig. 2. The time step ~e~~~~§ 

used could be scaled for other materials to a first approximation by Jm,i&, where 
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FIG. 1. Model used. The free atoms are marked by circles, boundary atoms by squares. The smaller 
markers arc in a plane below that of the larger. Interatomic bonds, are shown as straight lines. 

m, is the atomic mass and k is some effective spring constant of the bonds. Some 
experimentation may of course be necessary. The size of the models used in atomic 
simulations varies over a wide range, but the one used here is typical of the smallest 
which have been used. It contains 194 atoms in total of which 128 are free to move. 
The 66 boundary atoms are rigidly fixed at the positions needed to apply the 
desired boundary loads to the model. In actual simulations some form of flexible 

FIG. 2. Johnson-I interatomic potential. 
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boundary scheme is useful to get more accurate results, but either these update the 
positions of the boundary atoms only at long time intervals while holding them 
fixed between these updates [16], or the boundary motions are defined by other 
degrees of freedom which are treated in the same way as the atom positions 1171. 
Thus the computer time needed for a model with rigid boundary conditions is 
representative of that for a model with flexible boundaries, so that these were not 
considered in this test. The time for one evaluation of all interatomic forces was 
about 0.6 s on a CDC 6400 computer. This time is proportional to model size and 
to the complexity of the interatomic potential used. More complex potentials would 
be desirable but they have been restricted by computer cost in the past. Wowever, 
sizes more than 10 times larger than that tested here have been used in some cases 
11171. It is felt that changes in size should not affect the relative merits of various 
integration schemes or static solution methods although no tests were made of this. 
Future work could test this point. 

The integration schemes were compared by checking their stability limits and the 
accuracy of energy conservation which they maintained while simulating the ther- 
mal vibrations of the model of Fig. 1. Energy conservation was checked since it is a 
single number characterizing the whole system accuracy, it is simple to evaluate, 
and it is often the physical property which is of primary interest, for example, in 
thermodynamic simulation of saddle point energies for defect motion. For this test, 
the atoms were first displaced from their equilibrium positions by normally dis- 
tributed amounts such that the extra energy added to the system was equal to 1 aJ 
(1 aJ = lo-l8 J). This is approximately the energy the crystal would possess at room 
temperature. It was chosen as being typical of the energies which might 
examined in a thermodynamic analysis, as well as the energy excess which might be 
present in a model during the course of a static solution. For instance, it is about 
twice the excess energy which must be removed from the crystal for a crack 
problem at two times the Griffith stress intensity factor. The factor of two in energy 
should account for the presence of some bonds which are very highly stretched in 
such defect problems which do not appear in thermal vibrations. 

The simultation was carried out with each integration scheme for a model time of 
3500 fs (1 fs = lO-‘5 s). This time was chosen as the time needed for very accurate 
static solutions. This can be seen from the results of the static solution tests presen- 
ted later. This length of time is also enough to permit a shear wave to ~r~~aga~e 
about 40 lattice parameters and, since the speed of crack propagation or dislocation 
motion is of this order of magnitude, it should be sufficient for dynamic studies of 
defect motion as well. For shorter times, the stability limits may appear to be exten- 
ded slightly since some cases appeared stable for several hundred fs before ~~a~~~ 
diverging. 

Each integration scheme was tested with step sizes of 3, 6, 9, 15, 21, 30, and 45 fs, 
at least. The rate of increase of energy error with model time was roughly linear for 
almost all cases. The few exceptions were isolated and did not affect the relative 
standing of the methods involved. Thus comparing errors at the endpoint of the 
simulations is sufficient to rank the methods. This error is presented in the form 
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r/(KT), where r is the energy error at the end of the simulation, K is the maximum 
system kinetic energy (which is 1 aJ in these tests), and T is the time of the 
simulation (3500 fs). This is plotted against the measure of computer cost, h/n, both 
on logarithmic scales, in Fig. 3. 

From Fig. 3 it can be seen that the q = 4, s = 1 Nordsieck method has the greatest 
stability and therefore should be best for static solutions. The commonly used 2- 
step difference formula is next best. It is in fact more accurate than the Nordsieck 
method over most of the range of step sizes but as stated earlier this factor is 
negligible for static solutions. The Nordsieck scheme does use slightly more 
memory than the 2-step difference and this may be a problem in some cases. The 5- 
step difference and the Runge-Kutta methods are also acceptable while the hybrid 
scheme and the q = 6, s = 1 Nordsieck are significantly worse. Step sizes which have 
been used in simulations are not always stated in published work but the largest is 
apparently 17 fs [3] used in an iron dislocated problem for the 2-step difference 
scheme. This is very near the stability limit found here for this method and confirms 
the general applicability of the results for different problems. 

The best method to be used for a dynamic analysis depends on the accurately 
level needed. An order of magnitude estimate for this may be made as follows. Sup- 
pose the material properties are known to 1% and it is desired that the integration 
scheme accuracy be comparable to this. If r/K=O.Ol at a time of 3500 fs, then 
r/(KT) = 2.9E - 6 fs-‘. At this accuracy and higher, the q = 6, s = 1 Nordsieck and 
the 5-step difference schemes are best. At lower accuracies the 2-step difference 
becomes best with the 5-step difference very close. The others are generally within a 
factor of 1.5 of the best methods in computer cost except for the Runge-Kutta 
which is as much as 5 times costlier at some accuracies. 

In conclusion, if a single method is desired for static and dynamic analyses, the 2- 
step or 5-step difference schemes are probably the best. The former has a smaller 
memory requirement. For static analyses alone, the q = 4, s = 1 Nordsieck is slightly 

I I I 1 I I I 
30 20 10 5 3 2 1 

h/n [fs] 

FIG. 3. Results of integration scheme tests: (-) 2-step difference; (- -) 5-step difference; (- - -) 
Runge-Kutta; (- - - -) q = 4, s = 1 Nordsieck; (- - - ) q = 6, s = 1 Nordsieck; ( . . ) hybrid. 
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better than the 2-step difference method. The integration time step used must be less 
than 20 fs for stability for the Nordsieck case and 10 fs should provide a sufficient 
safety margin to ensure stability under all conditions. No instabilities have ever 
been observed using 10 fs on a wide variety of problems, while instability has 
occurred occasionally when 20 fs has been used, and once with 15 fs. For those 
dynamic analyses dominated by accuracy rather than stability considerations, the 
lowest cost integrator for a given accuracy should be selected. From Fig. 3, this can 
be seen to be either one of the difference schemes or the 4 = 6, s = I Nordsieck 
method. The step length for any degree of accuracy can be read off Fig. 3 and scaled 
for other materials as mentioned above. 

STATIC SOLUTION TESTS 

In this section the three static solution methods will be compared. The model 
used is the same one used for the test of integration schemes. The computer time 
required to approach equilibrium will be determined for four problems. In three of 
the problems the boundary atoms were fixed at the perfect crystal positions. The 
free atoms were given initial displacements which were sinusoidal in form, 

2.4 = A sin (mn x/d) sin (WUC y/d) 

u = B sin (WDC x/d) sin (WZK y/d) 
(1) 

where (u, o) is the displacement of the atom at (x, u). B was set equal to A/2 so that 
the displacement vectors did not lie along a high symmetry axis such as the [ 1 IO] 
direction. The value of A was chosen so that the total energy which had to be 
removed from the crystal was 5 aJ. This is larger than the energy excess in most 
static solution problems so that the efficiency of the solution schemes over a wide 
range of energy levels could be observed. Values of 1, 2, and 3 were used for m. This 
form of test problem was chosen so that the effect of different spatial frequencies in 
the initial position errors for static problems could be determined. Also, since the 
final position which was sought was the perfect crystal position, no problems of 
alternate minima were encountered which can be seen in more complex problems. 
The final problem on which the solution schemes were compared was a crack tip 
problem. For this, the boundary atoms were set at the positions specified by linear 
elastic fracture mechanics as were the initial positions of the free atoms. The system 
was then relaxed from this position. The energy which had to be removed was 
about 0.063 aJ for a stress intensity factor equal to the Griffith value. 

The conjugate gradient method had to be modified in one way from that presen- 
ted by Sinclair and Fletcher [6] in order to get efficient convergence. It was found 
that the unmodified method hung up at non-equilibrium points which it only slowly 
passed. To avoid this, the series of conjugate directions had to be restarted 
periodically, much more often than suggested by the tolerances of Sinclair an 
Fletcher. A restart every 10 steps was satisfactory. 
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The results are shown in Figs. 4-7. Each figure gives the results of one of the test 
problems. The horizontal axis in each plot is a measure of computer time expended. 
This is expressed as the number of interatomic force evaluations made. The 
integration scheme used for the two quenching solution methods was the q= 4, 
s = 1 Nordsieck with a time step of 10 fs. Increasing the step length would propor- 
tionally decrease the computer time needed to reach a given level of accuracy for 
the two quenching methods thus making them more attractive vis-a-vis the con- 
jugate gradient method. The test of integration schemes described above indicates 
that this could be done although by less than a factor of 2. To do so would remove 
the safety factor on the stability limits of the integration and so would not be 
advisable. Part (a) of each figure is a plot of energy error in the solution against 
computer time used. The energy error expressed as (C-E), where C is the potential 
energy of the system in its current configuration and E is the potential energy of the 
system at the final equilibrium configuration. E was determined to sufficient 
accuracy from a very accurate solution for each case. Part (b) of each figure is a 
plot of the sum of the squares of the forces on all atoms, IF12, against computer 
time. At equilibrium, this should be zero of course. 

t 
I 1 t 

0 100 200 300 

NUMBER OF FORCE EVALUATIONS 

FIG. 4. Results of solution test. Sinusoidal initial displacements, m = 1. The integration step length 
used with the two quenching algorithms = 10 fs: (-) modified conjugate gradient; (- -) simultaneous 
quenching; ( - - - ) individual quenching; ( . . ) unmodified conjugate gradient. 
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NUMBER OF FORCE EVALUATIONS 

FIG. 5. Same as Fig. 4 except m = 2. 

The results show that for all cases, the errors decreased approximately exponen- 
tially with computer time. This knowledge enables a prediction to be made of the 
time required to reach a given accuracy level once a solution has been started. This 
may be useful in scheduling. In addition, for the sinusoidal initial displacement 
problems, the modified conjugate gradient method was best, followed by the 
simultaneous quenching and the individual quenching methods. Increasing the 
integration step size for the simultaneous quenching method could make it more 
efficient but not so much so that it would become best without introducing the 
possibility of numerical instability. The poor performance of the individual 
quenching was surprising in view of its widespread use. It may do much better if 
more than one atomic mass were present or if longer range forces were used. This is 
a point which could be examined in the future. The unmodified conjugate gradient 
method reached stages in the solution at which the change in position of the system 
during each step became very small. This causes the plateaus in the energy arid 
force curves which were not passed in the time studied. For each method, the time 
to reach a given accuracy was shortest for the highest spatial frequency, m = 3, and 
largest for the lowest frequency, wt = 1. Thus if any trade-off were possible, initial 
conditions should be chosen to minimize the low spatial frequencies in the initial 
errors. This may be of interest to proposals [ 18 1 to combine the present solution 
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NUMBER OF FORCE EVALUATIONS 

FIG. 6. Same as Fig. 4 except m = 3. 

methods with the so-called “lattice statics” models. The change in solution sp 
the spatial frequency changed was least for the modified conjugate gradient n 
and greatest for the individual quenching method. 

For the crack tip problem, the curves are more complex but the same or 
efficiency holds for the solution methods, so this result is probably 
applicable. The plateaus in the unmodified conjugate gradient curves are agair 
The force magnitude plot of Fig. 7(b) shows that the plateau was passed and 
fairly accurate equilibrium position was achieved at about 320 force evalur 
The reason that the steep drop off was not observed in the energy plot of Fi, 
is that the equilibrium position which was found by this method was differen 
that found by the others. The energy difference between the two equilibria is 
0.00017 aJ. The curves for the other methods seem to have kinks at this 
indicating that they too may have felt this alternate equilibrium point. This 
would seem to confirm the statement of Beeler [19] that “of all the rnr 
available for computing defect equilibrium configurations, the artificial da: 
dynamic method [the quenching methods used here] is the only one which w; 
tainly converge to the lowest energy configuration and not to some IOU 
metastable configuration.” That this is not true in general, however, can be se 
the crack problem at a stress intensity factor of twice the Grifftith value. The 
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100 0 

NUMBER OF FORCE EVALUATIONS 

FE. 7. Same as Fig. 4 except for crack tip problem at the Griffith stress intensity factor 

does not propagate because of the lattice trapping effect. The accuracy versus Mom- 
puter time curves are similar to those already given and so will not be presented. Hn 
this case, however, three different equilibria were found. The lowest in this case was 
found by the two conjugate gradient methods. The simultaneous quenching method 
converged to an equilibrium configuration 0.0005 aJ above this and the indepen- 
dent quenching method to one 0.0136 aJ above the conjugate gradient solution. 
Figure 8 shows two of these equilibrium positions and the unbroken bonds in each 
case. The differences can be seen mainly in the area between the crack tip and the 
lower right corner of the model. These are real, separate equilibrium positions made 
possible by the presence of a non-linear interatomic potential, and they are not 
merely artifacts of the solution method used. The presence of these alternate 
equilibria may be important in computer simulation studies. Saddle point energy 
for crack propagation and thermally activated defect motion, for example, may be 
significantly different for the separate equilibria. No solution method apparently 
can be counted on to give true lowest energy configurations. The problem con- 
sidered here is of course a simple one and cannot be considered representative of a 
true crack tip situation. The main problems are the small size and the rigid boun- 
daries, but improving these points would increase the number of degrees of freedom 
and increase the region of crystal affected by the non-linear crack tip field, so that 
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FIG. 8. Alternate equilibria for crack tip problem at twice the Griffith stress intensity factor: 
(a) modified conjugate gradient solution; (b) individual quenching solution. 

the number of alternate equilibria possible may increase. The fact that alternate 
equilibria are so easily produced even for such a simple problem as this indicates 
that they may be more common than is usually considered. 

The final point which will be considered is the relation between the energy error 
(C-E) and the sum square of the atomic forces /Fl2 as the system approaches 
equilibrium during a static solution. The former quantity cannot, of course, be 
known before the solution is completed since E is the final equilibrium energy, but 
the latter is easily calculated at any time and it has in fact been used [6] to deter- 
mine the point at which the solution may be stopped. It can be used with all 
solution methods considered here. Other stopping criteria involving the use of 
kinetic energy in the system are more common for the quenching methods [3,4] 
but these cannot be used for the conjugate gradient scheme. The criteria and the 
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values used as tolerances in them have apparently been chosen fairly arbitrarily in 
the past. Figure 9 is a plot of (C-E) versus \Fl* for all solution schemes on all 
problems tested here. A point is plotted for each after every 20 force evaluations 
with the exception of the unmodified conjugate gradient scheme for the crack tip 
problem which converged to a metastable equilibrium. It can be seen that the force 
and energy are very strongly correlated for all cases. If a single interatomic bond is 
represented to a first approximation by a linear spring, we would have 

e = f2/(2k) (21 

where k is the spring constant, e the potential energy, andfthe force in this bond. If 
all bond springs were similar, the total energy above the equilibrium state and the 
sum square of all forces should behave in the same way. Figure 9 contains plots of 
the above equation for ks of 39.3 and 15.7 N/m. These are the spring constants for 
small displacements of the nearest and second nearest neighbour bonds in this 
model at the perfect crystal lengths. This can only be a very rough approximation 
to the true situation as a system such as the one used here approaches equilibrium 
of course. In crack problems for example, there is a general stretching of all bonds 
and a corresponding decrease in spring constant since the bonds are non-linear, 
Also, the fact that all springs are not alike even if no changes occurred would mean 
that no single value of k could characterize the system for all energies. Nevertheless, 

1o-t&L-&- 
10-20 ,(p' 

ATOMIC FORCE, iFi IN’] 

FIG. 9. Energy error versus sum of squares of atomic forces for all cases. 
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the correspondence between the observed points and the curves is quite got 
for the crack problem. This ‘ability to estimate the actual value of the energ 
makes the force criterion an excellent one to use to determine when a solut 
reached a sufficient level of accuracy. 

CONCLUSIONS 

The tests presented in this paper have shown that the selection of the 01 
method for solution of an atomic simulation problem can result in a deer 
computer time used by factors of 2 or 3 over that required by other, ofte 
methods. For dynamic analyses where accurate solution of the equations of 
of the system is desired, the integration schemes which provide the best 
mance are the 2-step and 5-step difference formulas at low accuracies and the 
difference and q = 6, s = 1 Nordsieck at high accuracies. If one of the quc 
methods are being used for static solutions, the q = 4, s = 1 Nordsieck 
followed by the 2-step difference scheme. The integration step sizes may be 
from Fig. 3. 

For static solutions, the conjugate gradient optimization scheme has prov 
ter for all test problems than either of the quenching methods. It was 
however, that the series of conjugate directions had to be restarted mucl 
often than suggested by Sinclair and Fletcher in order to get efficient convl 
(about every 10 steps). Simultaneous quenching was better than inc 
quenching for all cases. It may be that in problems where more than one 
mass is present, individual quenching could be superior although this u 
tested. For all solution methods, the higher spatial frequency components 
position errors were removed before the lower ones. This difference in spe 
especially important for the quenching schemes, less so for the conjugate g 
method. The test problems chosen here were fairly elementary but it is hop 
the results are of general applicability. Future work could check the effect ol 
size on solution efficiency and could determine if the addition of flexible bo 
schemes has effect on it. The ease with which alternate equilibrium position 
obtained indicates that this problem may be of some importance. Judging 
limited experience presented here, no static solution method appears to guar 
true lowest energy state. The differences in energy between the various equilil 
fairly small but may become important when questions of thermally activates 
motion are considered, for example. Further exploration of this point would 
to be in order. Finally, the use of the sum of the squares of the unbalancec 
on all atoms appears to be a good criterion to use to determine when st 
accuracy has been reached in a static solution. 
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APPENDIX 

The numerical integrators tested in this work are described in this Appendix. In 
what follows, each degree of freedom of each atom is treated identically and its 
value at time t represented by x(t). Its derivatives with respect to time are 1, ji-, R, 
x iv, and xv. The force on this atom in the direction of the degree of freedom x is F. 
This is calculated for all atoms when all degrees of freedom X, i.e., the positions of 
all atoms in each coordinate direction, are given. Since it is a function of the atomic 
coordinates, it is specified F[x] but it must be emphasized that this is a vector 
relation, All forces F may be calculated when and only when all degrees of freedom 
x have been specified. The integration time step used is h. The atomic mass is m,. 

Two-step Difference 

The form used here is equivalent to that given in [S] but is written in a different 
notation for easier comparison to the other methods: 

x(t + h) = 2x(t) - x(t - h) + h%(t). WI 

Five-step Difference [lo, p. 271 

x(t+h)=2x(t)-x(t-!z)+h*/240[299qt)-176qt-h) 

+ 194jl(t - 2h) - 96Z(t - 3h) 

+ 19qt-4h)]. 

Runge-Kutta [ 13, p. 493 

This is a third order Runge-Kutta scheme for second-order differential equations: 

k, = VCx(t)llGh) 
k, = h2F[x(t) + 2hi(t)/3 + 4k,/9]/(2m,) 

x(t+h)=x(t)+h$t)+(k,+k,)/2 

i(t + h) = i(t) + (k, + 3k,)/(2h). 

It can be seen that two force evaluations are required per time step for this method. 

Nordsieck Methods [14; 13, p. 1481 

These are equivalent to Adams methods but are written in a slightly different 
form mainly to facilitate changing the step size. They are predictor-corrector 
methods. If the predictor operation is specified by P, the corrector by C, and the 
evaluation of the forces by E, then a single application of each may be expressed 
PEC. This is an s = 1 scheme. If the corrector is applied twice, s = 2 and we have 
PECEC or P(EcY)~. In general, changes in s are described by P(K)“. The number 

581/61/2-5 
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of force evaluations per step equals s. The P and C operations for the 4 = 4 and 
q = 6 methods are described below where 

yo=x y3 = Eh3/6 

y1 =ih y4 = xi”h4/24 

y, = .fh2/2 y, = x’h5/120. (A4) 

Superscript p refers to predicted values, c to corrected values. 
q = 4 predictor: 

yo’(t+h)=~o(t)+ vi(t)+ YZ(~)+ ~3(t) 

YW + h) = yl(t) + 2~2(t) + 3yx(t) 

Y% + h) = YZ(~) + 3~3(t) 

Y% + h) = ~dt). (A5) 

q = 4 corrector. From y,“(t + h) = xP(t + h), get the predicted force, 
FP[xp(t + h)], at t + h. Calculate W=FPh2/(2m,) - y,‘(t + h). Correct all ys by 
setting yF( t -t h) = yf’( t -k h) + ci W, where 

co = $ c2 = 1 

c,=g c3=f. 

q = 6 predictor: 

YoPU + h) = ye(t) + vi(t) + yz(t) + At) + y‘,(t) + ydt) 

YfV + h) = YI(~) + 2y2(t) + h(t) + 4y4(t) + 5ys(t) 

y%+h)= ~2+3~3(t)+6y4(t)+ W,(t) 

.S(t+4 = .dt) +4~4(t)+ 10~5tf) 

v,‘(t + h) = Y.dt) + 5ys(t) 
y% + h) = Ys(t). (A6) 

q = 6 corrector. From yg(t + h) = xP(t + h), get the predicted force, 
Fp[xp(t + h)], at t + h. Calculate W= Fph2/(2m,)- yT(t + h). Correct all ys by 
setting y;( t + h) = yf’( t + h) + ci W, where 

co = & 11 
c3=i% 

251 
Cl = m c4=$ 

cz= 1 c5=&. 
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Note that there are some errors in the formulas given in [ 151. The second 
derivatives below are calculated by jI = F[x]/m,. First, the non-step point 

x(tf0.7h)=a,x(t)+rx,x(t-h)+a,x(t-2h) 

+a,x(t-3h)+h2[p,ji(t) 

+/32.qt-h)+&.f(t-2h)+/?&qt- 3h)f (A3 

where: 

a, = - 1.9320993 PI = 0.8625005 

a2 = 6.4719549 p2 = 3.0303805 

a3 = - 3.4476119 p3 = 0.4336798 

a4 = -0.0922437 /3z, = -0.0072178. 

Then the full step 

x(tfh)=y,x(t)+yZX(t-h)+y~X(t-2h)+y~X(t-3h) 

+h2[6,.%(t)+6,f(t-h)+6,Z(t-2h)+6,.%(t-3h)] 

+ h261( t + 0.7 h)/m, (A81 

where 

y1 = 2.0580497 6, = 0.7044318 

y2 = -0.9634579 6, = 0.0872588 

y3 = - 0.2472333 6, = -0.1544589 

y4 = 0.1526415 6, = -0.0095188 

6 = 0.1615960. 

Two force evaluations per time step are required by this method. 
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